Prairie Rhythms: Predators and Pastoral Stewardship

As I prepare for my upcoming living sculpture titled "Sequel," I had the opportunity to explore the prairie ecosystems at Pierce Ranch. The morning started with collecting prairie seeds, which is a vital step in bringing my sculpture to life. To enhance my understanding of these ecosystems and find the most viable seeds, I reached out to a local prairie conservationist who has been instrumental in restoring numerous prairies, notably preserving the Katy Prairie. Collecting seeds is much like eating crawfish, proven to be a catalyst for engaging and enlightening dialogue.


The insights I gained from this exchange confirmed my concerns regarding land preservation. It might surprise and disturb you to learn that the most vibrant and diverse prairies aren't necessarily those that are protected. Rather, they are the prairies that have embraced a more dynamic relationship with the land through careful ranching practices and thrive with life and diversity.

Historically, the natural balance between predators and prey shaped these ecosystems. Predators once hunted freely, guiding the movements of herbivore herds, naturally managing the consumption of vegetation (energy) and the dispersal of organic matter in the form of dung, returning energy back into the soil. However, human intervention led to the decline of these predators, overgrazing, and the desertification of ranchlands. Modern-day ranchers have learned to adapt by using portable fences to mimic these natural movements. This modern adaptation sustains the prairie as a healthy ecosystem, supporting numerous bird species and wildlife.

Through this blog post, I hope to reach an audience unaware of the critical role of ruminants in preserving and revitalizing prairie ecosystems. It's not merely about protecting a static image of nature but understanding and fostering the dynamic relationships that sustain it. The prairies are a testament to the resilience and complexity of life when allowed to interact naturally, even within the framework of sustainable human practices.

It's exhilarating to see how this knowledge aligns with my artistic vision. The conversations I've had and the observations I've made will undoubtedly enrich the narrative and structure of my living sculpture. The prairie seeds are not just components of my work; they symbolize a deeper understanding of ecological balance and the beauty of a thriving ecosystem. They are a source of energy and knowledge, a way to repay the planet.

As I continue this creative process, conversations with friends and experts will remain the cornerstone of my inspiration. In sharing these insights, I hope to foster a broader appreciation for the nuances of prairie conservation and the subtle yet profound ways we can contribute to preserving our natural world.

I leave you with questions that modern society must consider: How can ruminant populations be managed in the absence of predators? What are the consequences of not culling herds? What does the future cycle of life entail?

Echoes of Existence-how to engage the students

I am slowly working to find solutions to the problems that will arise when the students implement the installation.

First, how to get students that are not comfortable with nature to want tobe involved. What will draw them in?

Second, a big problem is how to control a group of college kids in a field and have them complete a detailed installation.

Bloomington is a walking city. Every day as I would walk about town and the campus I worried about how I was going to solve these two problem. And like on most college campuses everyone is in their own audio visual world contained between the ear pieces of a headset. And I was the same. The difference was I still wanted to connect to those passing by me with a “good morning” or hi. I found the IU students were very focused on the sounds in their headsets they did not need to make eye contact or say hello.

In a discussion with an English professor, Shannon Gayk, who also teaches a walking class, I learned that a novel idea for students is silent walking. The idea of walking without a headset without sound — silent.

Thinking of headsets and silent - my mind went straight to silent raves then to a silent installation.

Would the concept of a silent installation draw the students in. Could this commitment to headsets be a possible tool for crowd control during the installation?

I love the idea. But that leads to another hurdle. How do I design a silent installation? What technology makes this possible?

With a quick Google search, I found several companies that provide everything you need for a silent event.

Planetary Mission Statement .

Integrating systems theory into my art practice has influenced my work in many ways. It is one of my core beliefs that in order to save the planet it is imperative that every organization, be it large profit-driven or small non-profit, commits to embedding an environmental ethos into their core values. The place to start is with an organizations mission statement.

In a serendipitous encounter with an acquaintance from a prestigious art institution this weekend, I learned of their significant reorganization. I suggested that every institution embed an environmental ethos into their mission statement and then I thought - even Throughline. Throughline is a newly organized Collective that I am a member of.

Today I discussed these thoughts with fellow Throughliner Caro Otero a gifted artist and caring human being. Caro and I are part of the Throughline facilities committee. We discussed that there are steps we can take to improve our day to day operations and become better stewards of the planet.

Envisioning a profound commitment, we proposed to the administration committee to incorporate this spirit into Throughline's mission statement:

It could read something like this-

We vow to serve as Earth's custodians, honoring its natural rhythms. Embracing accountability for our environmental footprint, we strive to operate conscientiously, leaving a positive mark through purposeful actions. We are advocates of planetary regeneration.

Or something that says Throughline cherishes nature and restores the environment through conscious daily actions.

In our role in the facilities committee, Caro and I will examine Throughline's everyday activities as an organization and consider ways to operate more responsibly and advocate for the planet. We will re-evaluate these procedures annually.

Please pass this idea on to your organizations and incorporate planetary responsibility into your bylaws.

Besides making greener choices in the products we buy, such as disposable cups and beverages, our treatment of urban landscape and protection of Earth’s living soil is a powerful way reduce our carbon footprint and support biodiversity.

There is tremendous power in the collective action of small acts.

Indiana University artist in residence— conceptualism, the site, archeology and anthropology.

October 11th was the end of the first leg of my residency. The experience truly supports the statement you don’t get what you want but you always get what you need. I did not seek out the residency but I can see how it is helping me take my Social practice to the next level.

It is giving me the opportunity to use; the symbolism of a labyrinth, the regenerative symbol of a bison, the turfgrass of an institute of the US collegic system to change societal habits. These features alone are rare and hard to come by resources.

Exploring the campus and discussing my plans with all who would listen resulted in IU providing me with the opportunity to add a few more layers to the work. Specifically conceptualism, archeology and anthropology.

Conceptualism- The Eskenazie Museum on IU’s campus has one of the three complete collections of Marcell Duchamps readymades. Seeing these pieces of Duchamp the father of conceptualism from the 60!s and 70’s gave me the idea that my work at Indiana would be more impactful if it is conceptual.

As I began to plan the labyrinth design and installation I began to see how beautifully Conceptualism works with Social sculpture. If I create the concept and the design the steps to install it and the students implement my concept and design it becomes theirs. It won’t be my art they assist me with it will be their actions taking meaningful steps.

The last Monday at IU in a meeting discussing the actual installation process with one of the professors and directors of the Hilltop Gardens it was suggested I work with the anthropology department and Archeology departments when I return. Archeologists will be enlightening when it comes to installing the grid. The Anthropology department can help facilitate a possible relationship and sharing of culture between the students of the First Nations and the students who do not have a deep connection to the land. I would like the installation to be a catalyst for the two groups to develop a unified way forward, a new tradition or ceremony that will give them all together a personal connection to the landscape and the biodiversity it will support.

The next step is to get the University wheels to approve a site. To be the most successful the site needs to be a sea of turfgrass, have full sun, be spacious enough to accommodate the 85’ X 54’ bison, and accessible to the students and community.

I am thrilled to announce that in late January 2024, IU selected a sloped plot of The Hilltop Gardens for the installation.

Related blog posts

A labyrinth of what shape? http://www.cindeeklement.com/blog/2023/10/2/what-kind-of-labyrinth-a-seed-a-beautiful-design-a-bison-that-is-the-question

The design

http://www.cindeeklement.com/blog/2023/10/8/the-labyrinth-design-how-will-it-be-installation

From 8” X 10” to 53’ X 85’

http://www.cindeeklement.com/blog/2023/10/7/how-do-you-build-a-labyrinth

A Turn of Events: My Dream Installation on hold.

This summer, I was presented with an incredible opportunity. A curator asked me to propose my dream installation, a chance to showcase something meaningful. The site owner was willing to support and fund the work.

After much contemplation, I decided on a proposal that filled me with passion and urgency. However, last week, it all came to a halt.

I am sincerely grateful for the curator’s interest in my work and the site owner’s support. Their initial inquiry inspired this proposal, and I cannot thank them enough for that. I believe that everything happens for a reason, I have an idea and I am hopeful that I will find the project a site and funding.

First a little background. While at Indiana University, I became aware that integrating ecological recovery with natural systems is a new academic direction and numerous educational institutions are interested in this area. After all, universities and school systems are the largest landowners in any city and having research students involved would be a great asset. Transforming the proposed installation into an art/environmental science installation would significantly enhance the social sculpture’s reach and benefit a university and society.

Below is my proposal.

Introduction-

Global warming, food security, drought/flooding, wildlife habitats, economic instability, and health – these problems are not new to humankind. The archeology of ancient civilizations has recorded connections between the longevity of civilizations and the health of their soil. The United Nations reported in 2014 that the world's topsoil would only last 60 more growing seasons. Soil scientists around the globe agree that solutions to these issues are rooted in our treatment of soil—the skin that covers our planet. 

In a moment of global uncertainty, I ask myself, what materials and forms would I use to create the greatest impact on society and the environment? As I think of ancient civilizations' architecture, art, and spiritual practices, pillars and vessels played an important role in shaping their understanding of the world. Much of my previous work has been about conservation issues, looking specifically at Earth’s natural systems of bees, at waterways, at bison, at native plants, at recovery from Hurricane Harvey, and now at the underground systems of Earth. And so, I would use roots as my material and pillars as my vessel.

standingGROUND

In standingGROUND, I propose a four-stage installation of 5’-10’ tall pillars of various shapes grown from the roots of long-rooted prairie plants.

These pillars will be created by stacking various shapes of clay vessels commonly purchased from home and garden stores. The vessels with the bottoms removed will be stacked and centered on a steel pole cemented in the earth with a small footing for stability. The pots will be filled with a leaf-mold compost and seeded with native grasses and plants known for their root depth. They are to be nurtured and watered for approximately twelve months or until the plants are rootbound in the clay pillars. The clay will then be delicately broken away and the above-ground plant material removed, leaving freestanding pillars of delicately intertwined roots bound in the shapes of the stacked vessels. The root pillars will stand erect on the hidden steel posts.

Drawing inspiration from the rhizomatic root structures of native grasses that give structure to Earht’s underground life, these sculptures, woven by natural systems, standing above ground, will bridge the gap between sky, earth, water, and modern humanity. These pillars offer a glimpse into the intricate workings of an underground prairie ecosystem, the upside-down rainforest for carbon sequestration of North America.

Four Stages

The first phase of standingGROUND will focus on the sculptural aesthetics of the work. I will carefully build the pillars composed of ready-mades to be strong sculptural elements on their own. Once a site is selected, I will choose a paint color that harmonizes with the surroundings and emphasizes the sculptural qualities of the pillars. Lighting will play a crucial role in showcasing the sculptures in relation to their environment. I will paint the pots before the installation, touch them up, and paint the joints afterward. Information on the site will discuss the ecological and social aspects not yet revealed.

The second phase will be to install the pillars into an immersive experience. The towering yet human-like pillars will be positioned strategically to create an intimate and inviting space for viewers. Within this space, a stone or stump will be placed as a reflective seat, provoking thoughts on how our actions impact climate and biodiversity and how humanity can find harmony within natural systems.

The third phase of standingGROUND is when I physically chisel the ceramic vessels away to reveal the social sculpture aspect, the delicate white lace-like intertwined roots bound in the shapes of the stacked ready-mades bridging the gap between sky, earth, water, and humanity.

The fourth phase encapsulates the cycle of life, decay, and regeneration. This crucial phase is essential for ensuring life on Earth. The root sculptures will gradually erode and disintegrate when exposed to the elements. Once the installation has reached the end of its visual lifespan, I will carefully remove the root sculptures. The poles and footings will be relocated from the site. This stripping away of the remnants will leave behind a cavity in the ground previously occupied by the footings. Remarkably, this void will serve as a space where the roots can be placed to rest-regenerate and give birth to new life.

I started experimenting with the shapes in their root form last week. I initially created six sketches in the form of watercolor monotypes. Then, I researched more pot shapes with larger mouths and created four more in round 2. The images of these sketches are below. I will continue experimenting with these shapes as I work on a site.

standingGROUND II

Watercolor monotype

30” X22”

StandingGROUND VI

Watercolor monotype

30” X22”

standingGROUND round 2 #1

Watercolor monotype

30” X22”

standingGROUND IV

Watercolor monotype

30” X22”

StandingGROUND round 2 #4

Watercolor monotype

30” X22”

StandingGROUND round 2 #3

Watercolor monotype

30” X22”

StandingGROUND round 2 #2

Watercolor monotype

30” X22”

standingGROUND V

Watercolor monotype

30” X22”

standingGROUND III

Watercolor monotype

30” X22”

standingGROUND I

Watercolor monotype

30” X22”

To Leave

The ephemeral beauty of nature lies not just in living organisms but also in their inevitable decay.

This morning, while examining “deeper than that” a private living sculpture art installation featuring indigenous plants, I was struck by the fading loveliness of the Rosinweed leaves as they withered. Contemplating the homophones “leaf”, “leave” and “leaves”, I pondered how societies historically understood the ecological value of allowing foliage to persist even after senescence. Is that why we call these objects a verb?

Leaves that have left a plant continue to nourish the soil and its microbial inhabitants even in death. Their decaying forms hold moisture, shade the living organisms in the ground, and provide nutrients as they return to earth, building a balanced ecology that sustains urban landscapes. They are an important material natures uses in its engineering of the water table.

Though a single leaf may seem a small, ephemeral thing, in aggregate and over time, the leaves left behind establish and uphold the very foundations of life.

Their decay is not an end but rather a beginning - a quiet, essential recycling of energy and matter that allows new growth to emerge.

In both the noun and the verb there are layers of beauty, and layers of ecological purpose, in the leaves left to molder where they fall. An ecosystem thrives on this gift of decay, using the ephemeral to fuel the eternal. Such is the profound, poignant cycle that the installation’s Rosinweed specimens, even as they bend and brown, help perpetuate. Out of seeming loss, abundance; out of death, life.

Leave your leaves and be grateful for their beauty as nouns and as verbs.

The American Beaver - research

In her book Beaver Land, How One Weird Rodent Made America, Leila Philip spends a chapter on Lewis H. Morgan's (America’s first Anthropologist) documentation of The American Beaver written in 1868. Lucky me, I have found a copy. I am wondering how this read may impact my work.

During a captivating walking tour of Buffalo Bayou in the early 2000s, led by an esteemed Master Naturalist, my fascination with beavers was sparked. It all started when we stumbled upon a tree stump adorned with telltale markings of these industrious creatures. Surprisingly, our knowledgeable guide harbored a deep dislike for beavers, prompting me to question their significance within the ecosystem. Alas, our Master Naturalist was left speechless, unable to provide an answer. As an artist documenting my practice, this encounter left me pondering the enigmatic role of the beaver, and the profound impact it holds within our natural world.

Just as bison’s behaviors shape our land ecosystems, beavers are the architects of thriving water and marsh ecosystems. Considering that water is the key to cooling our planet. To truly comprehend nature’s cooling mechanisms, I recognized the need to understand the Beaver and how their work may connect with the bisons and how humans can mimic these systems in urban landscapes.

As someone devoted to capturing the wonders of natural history and integrating them into our human-made structures, I’ve been amassing a collection of historical writings on natural history. I am looking forward to learning from this new addition to my collection.

In Morgan’s book, he delves beyond the surface-level characteristics that most naturalists focus on, offering a profound perspective.

Leila Philip‘s book is a thorough overview and introduction to a contemporary view of the Beaver. I will probably rerread Philip’s book overtime.

I want to know about the Beaver before the Railroad and what beavers think and how they work, what inspires these creatures to do what they do. Morgan’s book is that and more.

Living Llabyrinth- Building the grid

Building a Large Grid for Installing a Labyrinth: My Process. One reason I write these blog posts is to record my process. The other is to share information.

Constructing a labyrinth grid of this magnitude may seem like a daunting task. And it is for me. With the right strategy, it can be accomplished efficiently. As I embarked on this venture, I took the time to experiment and optimize my methods. Here's a breakdown of the process that was the most efficient.

To begin, gather the necessary materials: X-axis cords measuring 53 at 54' and Y-axis cords measuring 33 at 88' lengths. Keep in mind that the cords come in 100-foot lengths.

I wish I had of planned at 50’ by 100’ bison. The lighter is for singing the ends so they will not ravel. The tape is for tapeing the measured and twist-tied ropes for the installation.

I am making each cord that is a multiple of 5 a white cord. I think this will helpful the day of the installation.

1. X-axis cords: Start by unwinding the hundred-foot cord carefully, ensuring it doesn't become tangled. Here's a handy tip: tie a knot at one end and secure a twist tie next to it. Place the knotted end in a doorway and shut the door on it. This will hold it in place. Then, stick your arm through the middle of the looped cord and slowly unwind it, walking away from the door until it's completely straight.

2. Measure and cut the cord, leaving a few inches to knot and singe the ends to prevent unraveling. Tie another twist tie at the 54' mark. This will serve as the reference cord for measuring all other X-axis cords. Keep this cord secured in the door.

3. Take the leftover cord singe the end and knot it and tightly tie a twist tie inside the knot. Shut in the door with the reference length cord. Measure it against the reference cord and splice it with a piece of the next 100' wound-up cord to measure the 54' length accurately. Now you have a cord to start marking the grid on.

To mark the grid on the first cord—

The dining has been my studio work space. First I covered the 8’ table in a thick paper to protect it. Next I marked every 20” from end to end.

4. Prepare a long table by placing sheets of paper and securing them to the table so they will not slip. Measure and mark on the paper every 20". Lay the cord on the marked paper. To ensure stability, anchor the cord with a heavy object like a case of water.

I used a case of water to weigh down the cords.

Starting from the first knot, and twist tie secure each twist tie tightly along the edge of the table at the 20' marks. Continue tying twist ties until you reach the end of the 54' mark. You may have a little excess cord hanging after the last tie.

The 8’ mark of the table length and the last twist tie. I leave a few inches at the end just in case.

The first piece with every 20” tightly tied with a twisties.

5. Carefully wind up the cord, tape it securely, and mark it as X-axis 54'.

The first grouping of five- 4 red and the 5th white.

53 pieces - completed.

6. Finally, organize the cords by making four red and one white, keeping them grouped together.

IU - The labyrinth design - How will it be installed?

Once the grid is installed, the next step is to think about how to divide the work so that groups of student and volunteers can install my vision. .

Two options seem viable. The first idea is by marking the (X, Y) coordinates for each circuit of planting on individual pages. The other idea is by verticle rows.

Below I have marked the coordinates of the circuits. As I mark the coordinates I am not sure this is the way. I may need to break it down to smaller sections.

I can continue to consider how to breakdown the jobs as I begin building the grid.

IU - How do you draw a labyrinth?

During the first week of my residency at IU when I wasn’t exploring the city, University, art, museums, ecology, architecture, and landscapes I was experimenting with labyrinth designs.

Some sketches of three different types of kabyrintgs.

This design starts with a simple cross. I need to keep this simple.

Turning the cross/square labyrinth upside down I decided to attempted a seed labyrinth. I think a design less feminine will be better.

IU - Exploring the Intersection of Art and Humanity To Tackle Climate Change? Insights from Artists Miles and Melanie.

"If you hit a wrong note, it's the next note that you play that determines if it's good or bad." — Miles Davis

In humanity's quest to harmonize natural processes with industrialization and tame the beast of extreme climate, I consider problem-solving approaches from my artistic practice and the artistic world.

As a master of improvisation Davis embraced musical mistakes as valuable chances for growth—an approach we can apply to all aspects of life. How we respond to so-called errors ultimately shapes the final outcome. Humans have the unique ability to transform something "wrong" into something "right."

How does this apply to our environmental issues? Consider that as a species homosapien is a young species. Having thumbs instead of hooves our brains have evolved to create, and invent, to problem solve to make us not mammalian beasts but human.

Mountain Moving
On exhibition in the GRUNWALD GALLERY of ART IU.

The artist Melanie Cooper Pennington teaches Sculpture at Indiana University.

One of homosapien’s greatest inventions is industrialization. We are now clearly seeing and feeling the impact of industrialization on our ecosystems. The most important question humanity has to answer is — will industrialization be a “bad” note?

By adopting Miles’ mindset, we can discover new and innovative ways to address climate change and find harmony between nature and industry. As an eco-artist I consider problem solving perspectives that I use in my creative practice to visualize and transcend conventional thinking to create a better world.

I am engaged in an artist in residency program at Indiana University direct by the Arts and Humanities Department. The university recently launched an Environmental Resilience Institute, as well as a new A&H laboratory dedicated to Environmental Futures. They created a research platform to allow arts and humanities scholars at every level of education—to connect.

My first visit at IU was with Melanie Coooer Pennington. Melanie, creates mammalian sculptures to investigate the borders between the human/animal body and its psychological states. Melanie’s work provides an emotional visual to the power of thumbs by replacing them with hooves. Thumbs changed everything.

I saw Melanie’s Mountain Moving, thought provoking sculpture the day I started writing this post about Miles Davis and his creative process.

I believe through art and culture, we can move the industrial mountains facing humanity — our next note can create a masterpiece.

Peck + Scratch

Peck + Scratch Installation

Eight chickens and two roosters were installed in Symbiosis, April 1, 2023, from 11:00-5:00

 There's more than eggs when it comes to urban chickens. Peck and Scratch is a throwback to when every family had a symbiotic relationship with these quirky feathered friends. It was common knowledge that chickens are miraculous energy transformers; they effortlessly clean up weeds and bugs from living soil while providing families with a more sustainable and cost-effective alternative to chemical pesticides and herbicides. Plus, their waste is invaluable - it replenishes the soil with much-needed nutrients for plants to thrive. In addition, the protein-packed eggs they lay contain all the amino acids necessary for promoting brain health for early childhood development.

By offering a cozy environment, refreshing water, and a lush habitat, we're showing gratitude towards our curious and joyful friends and providing them a safe home away from potential harm. Instead of supporting factory farms, our chickens deserve to thrive in an ecosystem filled with living soil and all the essential components they need to lead happy, healthy lives.

It's time to think outside the (takeout) box and invest in the power of urban chickens.

CARBONsink rises — how to get rid of your turf grass.

“Carbon by the Yard” was a temporary relief in the shape of the Carbon element symbol, “C”. This simple gesture brought attention to the fact that gas lawnmowers emit eleven times the emissions of a new car.

Carbon by The Yard

In 2022, I transformed “Carbon by the Yard” piece into “CARBONsink ” using solarization and regeneration instead of herbicides to transform the turfgrass into biology. I then seeded it with wildflowers. The new piece soaks up rainwater, stores carbon and supports pollinators.

It is important to note that the EPA estimated that non-native turfgrass monocrops use one-third of all public water. In the US, this translates to 9 billion gallons of water daily.

These two social sculptures highlight how our colonial landscape decisions impact our carbon footprints.

CARBONsink 6/8/2023

DIY- check out the steps to install your own CARBONsink.

Soak the ground.

Use the power of water in conducting heat into the plot. Proper hydration will pull heat from the surface deeper into the soil, enhancing the effectiveness of solarization.

Cover the soaked turf with two layers of cardboard. This will smother the turf grass and use the suns energy to solarize it.

Soak the cardboard layer

Layer 4”- 6” leaf mold compost. I use Nature’s Way Resources and Heirlooms.

Spread the compost evenly .

Soak the compost , and level it for sprinkling the seeds.

Sprinkle seeds generously.

The seeds come from Native American Seeds.

Make sure the seeds make good solid contact with the ground. Press them in.

April 2023

June 8,2023

July 29, 2023

When plants collaborate-

”Problems cannot be solved with the same mindset that created them” - Albert Einstein

To change my mindset I have to change how I see. For years I have seen through a mechanistic mindset. Observing the growth of Symbiosis these past years has given me a new perspective. When I step back and consider what else might be happening, what can I see if I consider natural systems as opposed to purely industrial systems? A whole new world of thought and possibilities unfolds.

I see that nature is a master collaborator, as proven by the Rudbeckia hirta and Passiflora incarnate duo.

Planted close together, the vine quickly sought support from the stout-stemmed Susan, needy for sun, but lacking the strength to reach it alone. The black eyed Susan, not threatened, seems to welcomed the addition, together they twined and grew - now standing not two but four feet tall. Conventional thought sees the vine as overcoming the flower, but in reality, they are just two plants working together, building a structure that is maximizing photosynthesis and basking in the sun while providing protective habitat small life dwelling in the area.

A lesson for us all - Collaboration can truly conquer all. The fiery skipper seems to agree.

Symbiosis - Hairy water clover incorporates time and movement

Since the beginning of my artistic journey, I have consistently explored elements of time and movement within both two-dimensional and three-dimensional works. With "Hairy Clover," an element in Symbiosis this exploration takes on another layer of complexity - exploring how the water cycle creates motion that stores carbon, ultimately building the planet's energy.

Marsilea species are an extraordinary group of ferns, displaying a fascinating phenomenon known as nyctinasty - the daily movement of leaf orientation. During daylight hours they reach out to capture sunrays and then at night fold inwards into vertical positions due to pulvinus joints located towards the base of each stalk which adjust based on water flow into motor cells. This adaptation ensures that these plants remain attuned with their environment by regulating transpiration through stomata opening and closing cycles - remarkable!

I have read that this Texas native is endangered in many states. :(

Marsilea vestita, southern water fern

8” X 8”

Ink

What cave paintings from 25,000 years ago can teach us about regeneration.

This morning I read Mysterious marks on Ice Age cave art may have been a form of record keeping in science News.

The marks left in a cave 25,000 years ago illustrate the wisdom of early hunter-gatherers. Even then, these people were knowledgeable about their environment and respectful of nature's cycles; understanding that taking too much from one place could lead to decline. Nowadays, we can look back at this example as an invitation for modern civilization to take up sustainable living practices—regenerating our resources instead of simply consuming them without thought or consequence.

I spend a lot of time thinking about the question, how do we mimic regeneration in our cities? We have to ask, What can we learn from Earth’s earliest environmentalists? A lot.

Symbiosis: Why I am not anti-freeze


Humans naturally mourn the economic and surface loss of colorful flowers and green plants from a freeze. It is easy to become wrapped up in the superficial aspects. With systems thinking central to my eco-art practice, I wonder if there is an ecological purpose for a freeze. It has been a month since the freeze giving me time to watch and wonder. I have looked beyond the skin-deep perspective and discovered something beautiful about how a freeze gives life.

A week after the freeze, the same space is transformed into the earth tones of a 1980’s residential den.

This freeze occurred at the end of the second year since the Symbiosis installation. It was my first freeze with native plants and opened a floodgate of realizations and thoughts about freezes.

A freeze in the tropics looks and acts differently than in the northern US, but how are freezes in the tropics different than those in the Northern states? How does slimy organic matter from a freeze in the tropics impact its soil complexity? A freeze in a coastal prairie garden that has shade from a two-story building is not like a freeze in a sunny open field. Is there a relationship between the freeze and the drought, is there a relationship between seasons? For the past month, these are the questions I have taken with me when I visit Symbiosis and research on line.

What initially appears to be a destructive event can be the seed necessary for regrowth. Prairie plants are particularly delicate in these intense freezes as frozen water expands and rips apart cell walls, destroying their armature. When the thaw period eventually comes, and the water drains away, all that remains is a slimy puddle of cell slime.

A small corner of Symbiosis before the December 2022 freeze.

These slimy puddles and decaying plants quickly milt into the soil, building its complexity and enabling it to store carbon, cooling the planet and soaking up water. When it breaks down, it provides food for microorganisms in the soil. A freeze is a quick and intense way to quickly build a large amount of living soil in the subtropics. This is a refreshing reminder of how our actions have real-world impacts. I am leaving the dead organic material to break down naturally. I am mindful of the inherent beauty of all seasons, all colors of ground cover, and the event's natural power and energy potential. Understanding and honoring freezes can improve Earth’s health for future generations. It is the fastest, most economical way to build a large quantity of soil. When it comes to soil carbon as an asset, a freeze is an economic plus.

I am not anti-freeze - instead, I'm pro-freeze!

Almost two weeks after the freeze and the new growth is noticeable. . The dried plants are crumbling into soil.

I still have unanswered questions and I am hopeful they will reveal themselves through Symbiosis. Until them I walk the garden every day in complete amazement the new growth rise through the decaying material as it melts in the armature of the soil.

Golden-reined Digger Wasp - fascinating and gentle despite its sinister appearance.

This is one interesting creature, so interesting I pasted the article below.

Despite its vivid alarm coloration, the Great Golden Digger Wasp is not an aggressive species of wasp. They tend to mind their own business and can be found sipping on flower nectar during the summer, but in the early spring, females prepare to lay eggs.

Females will dig into loose soil and create many deep tunnels. When established, she then covers them to hide their existence. A female will track a small insect and sting them to paralyze them, but not to kill them. Once the prey is immobile, she will clutch it using her antennae and mandible (mouth parts) in order to fly it back to the tunnels. While in flight with her prey, it is not uncommon to see birds like robins or tanagers attempt to steal her meal from her by chasing her until she drops it. No other known species of Digger Wasp is known to be harassed by birds in this way. If the female is successful in returning to her tunnels with her catch, she will place the paralyzed prey aside to quickly inspect a tunnel. If it looks like it's still intact, she will pull the paralyzed insect, head first, down into it. She then lays an egg on the insect, exits the tunnel, and covers it over again. She repeats this process for each tunnel. Unlike other wasps, she does not actively defend her nest. Once hatched, the wasp larvae will feed on the living, yet immobile, insect until they are developed enough to leave the tunnel lair in the summer. Eventually, the parasitism of the paralyzed insect kills it.

Scientists are studying the behavior of this unique species. Great Golden Digger Wasps seem to display a type of internal programming. If their insect prey is moved away from the tunnel while the female inspects it, she will emerge, relocate it, bring it back to the tunnel entrance and start the inspection all over again. Every female exhibited the same repetitive 'start inspection again' behavior when tested in that way.

Females have also shown that they do not keep a tally of how many insects they catch versus how many tunnels they create. If some meals are stolen by birds, they do not realize that they are short on insects compared to tunnels.

With such gorgeous orange and black coloration, mild demeanor, and interesting behaviors, the Great Golden Digger Wasp is one to admire, not destroy. Perhaps a careful observer will discover even more fascinating things about this species.

Symbiosis Relationships 10/2022

New World Giant Swallowtail and Milkweed and the health of Monarchs. This tropical mikweed HAS to be cut down November 1. The Milkweeds are the host plants for Monarchs. They need to move south by November and won’t head south if Tropical Milkweed is available as a host.

Monarch and Climbing Hempvine. Climbing Hempvine is an aromatic delight. It reminds me if warmed sweet honey. The Monarchs agree.

Purple Coneflower and the Gulf Fritillary Butterfly.

Mockingbirds and the fence. I have learned that birds need habitats with multiple elevations. The fence is a popular place for birds to look for insects and tiny toads to eat while keeping an eye on predators.

Monarch and Climbing Hempvine.

Ask upper of the Hesperiini family

Gulf fritillaryon American beauty berry.

GulfFritillary on Marsh fkeabane pictured below.

Marsh fleabane

Gulf fritillary and Lawndale’s mailbox. Over a few weeks the count in the doorway climbed to over 200.

In identified mushrooms.

Carpenter bee

Gukf Fritillary are eating everything

How nature arranges itself

Chrysalis on crabgrass stem

Morning glory, mile a minute vine.

Carpenter bee and Obedient flower

The White viened pipevinesis is the host plant for the Pipelvine swallowtails. I wish I had more. The caterpillars devoures it, and then it comes back.

Cloudless Sulphur and Turkscap

Hemiargus ceraunus, it blue ceraunus,an d pasted native plants.

Monarch and Blue mist flower

Northern Mocking bird perched on the fence.

Northern Mockingbird and trough pond

Hesperiina And Frogfruit

Pushfly and Passiflora leaf

True Sparrow stays in messy bush like spaces for safety and for a source of caterpillars

American snout butterfly

Gulf Fritillary with OE

“Ophryocystis elektroscirrha (OE) is a debilitating protozoan parasite that infects monarchs. Infected adult monarchs harbor thousands or millions of microscopic OE spores on the outside of their bodies. When dormant spores are scattered onto eggs or milkweed leaves by infected adults, monarch larvae consume the spores, and these parasites then replicate inside the larvae and pupae. Monarchs with severe OE infections can fail to emerge successfully from their pupal stage, either because they become stuck or they are too weak

to fully expand their wings. Monarchs with mild OE infections can appear normal but live shorter lives and cannot fly was well as healthy monarchs.

Although recent research shows that tropical milkweed can lower OE replication within infected monarchs (due to high levels of cardenolide toxins), this might not benefit the monarch population. In

fact, this could actually promote disease spread by allowing moderately infected

I PROJECT MONARCH

HEALTH

monarchs that otherwise would have died quickly following eclosion to live longer and spread more parasite spores.“- monarch parasites.